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Abstract

Elasticity solutions for free vibration of angle-ply laminates subjected to cylindrical bending are obtained using a newly

developed semi-analytical approach. The thickness domain is solved analytically using the transfer matrix method based

on the state space concept, while the in-plane domain is solved approximately via the technique of differential quadrature.

The present method is applicable to arbitrarily thick laminates and for treating arbitrary edge conditions. The method is

verified by comparisons with the exact solutions of Pagano’s problem. Effects of variation of ply angle on the vibration

properties of laminates are investigated; mode shape switching is observed when ply angle varies. Numerical results for

fully clamped thick laminates are presented for future references.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

When it comes to the cylindrical bending of composite laminated plates, two exact elasticity solutions
respectively for cross-ply and anisotropic angle-ply laminated plates presented by Pagano [1,2] were always
adopted as the benchmark references. It is obvious that the former is a case of plane strain problem, while the
latter concerns three-dimensional (3D) issues. These two problems are commonly referred as the Pagano’s
problem. Most recently, Chen and Lee [3] presented the 3D exact analysis of angle-ply laminates in cylindrical
bending using the state space approach (SSA). The difference from Pagano’s problem lies in that all laminas
are assumed bonded imperfectly at the adjacent interfaces. All these exact solutions are limited to the plates
with two edges simply supported. Several generalized higher-order two-dimensional (2D) simplified theories
were proposed to investigate static bending [4] and free vibration [5,6] of angle-ply laminates in cylindrical
bending. However, numerical results presented in Refs. [5,6] were again only for fully simply supported
conditions.

Differential quadrature method (DQM), a numerical technique for solving differential equations proposed
by Bellman and his associates in the early 1970s [7,8], has been approved to be highly efficient for obtaining
numerical solutions of boundary/initial problems [9,10]. It was recently introduced to the state space
formalism by Chen et al. [11,12] to derive semi-analytical 2D elasticity solutions for laminated beams. This
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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hybrid method, termed as the state-space-based differential quadrature (SSDQM), allows the edge boundary
conditions to be treated precisely at each point along the thickness direction so that the Saint–Venant principle
becomes unnecessary. It was subsequently applied by Chen and Lee [13] to free vibration analysis of cross-ply
laminates in cylindrical bending with arbitrary boundary conditions; the plates under investigation are exactly
in the state of plane strain. In the present paper, the hybrid method of SSDQM is employed to obtain semi-
analytical 3D elasticity solutions for free vibration of anisotropic angle-ply laminates in cylindrical bending
with different sets of edge boundary conditions. Numerical results, especially for strongly thick laminates with
non-fully simply supported edges, are presented and believed of adequate accuracy for the reference of future
numerical analyses.
2. Semi-analytical formulations

2.1. State-space equation via differential quadrature rule

Consider an m-layered angle-ply laminates (see Fig. 1) in cylindrical bending along the y-coordinate, that is,
all variables are independent of the coordinate y. The Cartesian coordinate system is established so that
0pxpl and 0pzph, as shown in Fig. 1(a), while the material fibers are assumed to orient at an angle y about
the x-coordinate shown in Fig. 1(b).

Assuming that the laminates is in the state of harmonic motion, the set of first-order simultaneous
differential equations of state variables, at an arbitrary point in the kth layer (1pkpm), with respect to the
thickness coordinate z can then be derived as [3]
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Fig. 1. Geometry and coordinate system of an angle-ply laminates in cylindrical bending: (a) a laminates in cylindrical bending; and (b)

laminate scheme of a typical layer.
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where r is the mass density and o the circular frequency. All displacement and stress components in Eq. (1)
are called the state variables, while the accompanied induced variables are given by
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In the above two equations, the coefficients ci and bj are determined by the stiffness constants of constitutive
relations and are given in Appendix A. It is noted that Eq. (1) reduces to the state equation governing the
plane strain problem when y ¼ 01 or 901 [13].

For such a plate with two edges simply supported, an exact solution can be obtained by expanding the state
variables into trigonometric series about coordinate x [3]. However, if the laminates subject to edge
constrained conditions other than simple supports, say clamped or free, it is rather difficult to seek for an exact
or analytical solution to Eq. (1). A semi-analytical solution using the technique of differential quadrature was
recently proposed by Chen et al. [11,12] for laminated beams, and was subsequently applied to plane strain
problem of laminated plates in cylindrical bending [13]. Applying the routine procedure of differential
quadrature [14] to Eq. (1), the following state equation at an arbitrary discrete point xi (i ¼ 1, 2,y,N) is
straightforward:
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where N is the total discrete point number along the x direction, and g
ðnÞ
ik are the weighting coefficients of the

differential quadrature rule for the nth-order derivatives [14]. Similarly, the induced variables at the discrete
point xi can be obtained as
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In the above two equations, xi are coordinates of sampling points, determined, in the current work, by the
Chebyshev-Gauss-Lobatto points in cosine pattern [15] as

xi ¼
l

2
1� cos

ði � 1Þp
N � 1

� �
; i ¼ 1; 2; . . . ;N. (5)
2.2. Boundary conditions and solutions

In order to achieve a unique solution for a practical problem, the edge-constrained conditions should be
incorporated into the state equation, Eq. (3). To illustrate the application of SSDQM in this paper, only
simple supports and clamped edge constraints are considered. They are expressed in terms of displacement and
stress components as: simply supported edge (S) with sx;i ¼ txy;i ¼ wi ¼ 0; and clamped edges (C) with
ui ¼ vi ¼ wi ¼ 0, where i ¼ 1 or i ¼ N. Note that, for the simply supported edge, some of the constrained
conditions are expressed in terms of the induced variables. For the purpose of analysis, these conditions
should be re-expressed by state variables according to Eq. (4). Detailed procedure of handling boundary
conditions can be found in Ref. [13], and, for brevity, is not repeated here. Taking account of all boundary
conditions into state equation, Eq. (3), and assembling all the state equations at discrete points lead to the
global state equation for the kth layer as follows:

d

dz
dðkÞðzÞ ¼ Akd

ðkÞðzÞ, (6)

where dT ¼ ½ r
T
z uT vT wT sTxz sTyz � is the global state vector composed of state variables at all discrete

points, and Ak is the coefficient matrix for the kth layer obtained from Eq. (3) by considering all edge
constrained conditions. The explicit expression of matrix Ak is omitted here for simplicity.

For the case of homogeneous plate, the general solution of Eq. (6) is

dðkÞðzÞ ¼ TkðzÞd
ðkÞðzk�1Þ ðzk�1pzpzkÞ, (7)

for k ¼ 1, 2,y,m, where TkðzÞ ¼ exp½ðz� zk�1ÞAk� is the transfer matrix, through which the state
vector dðkÞðzk�1Þ at the bottom surface of the kth layer is transferred to that at an arbitrary coordinate z.
According to the treatment of laminated beams [11,12], a global transfer relation for the present angle-ply
plate can be derived by connecting solutions for all layers through appropriate continuity conditions at
interfaces as

dðmÞðhÞ ¼ Tdð1Þð0Þ, (8)

where T ¼ TmTm�1 . . .T2T1 is called the global transfer matrix. It should be pointed out that, for the sake of
numerical stability, joint coupling matrices [16] would be used by decomposing the laminates into several sub-
layers, similar to the way for the analysis of continuous Kirchhoff plates [17].

For free vibration, the lateral surfaces are tractions free, that is, all the stress components contained in
Eq. (8) equal to zero, and, hence, non-trivial solution of this problem leads to the frequency equation as
follows:

t12 t13 t14

t52 t53 t54

t62 t63 t64

�������

�������
¼ 0, (9)

in which tij is the partitioned matrices of matrix T. After obtaining natural frequencies from Eq. (9), the
normal modes of plates at the bottom surface can be obtained by substituting frequencies into Eq. (8)
accompanied with surface tractions boundary conditions. After that, repeat application of general solution,
Eq. (7) yields the global state vector at arbitrary coordinate z according to special requests.
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3. Numerical examples

Several numerical examples are performed to validate the present method for 3D analysis of anisotropic
laminates subjected to cylindrical bending. The edge conditions of plates in consideration are of simply–simply
(SS) and clamped–clamped (CC) constraints. Material properties are selected according to Pagano’s work [2],
i.e.

EL=ET ¼ 25; GLT=ET ¼ 0:5; GTT=ET ¼ 0:2; nLT ¼ nLT ¼ 0:25,

where E, G and n are, respectively, the Young’s modulus, shear modulus and Poisson’s ratio, and subscripts L

and T represent the direction parallel and perpendicular to material fiber, respectively. All layers of plates are
assumed of the same thickness, i.e. hk ¼ h/m (k ¼ 1, 2,y,m). For the sake of comparison, numerical results of
natural frequencies are presented in the normalized form of ō ¼ oh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=GLT

p
.

Firstly, an angle-ply laminated SS plate with the aspect ratio of h/l ¼ 0.1 is considered. The plate is
composed of different number of layers with the lamina scheme of 451/�451/y, which includes symmetric and
antisymmetric cases. Fundamental frequency parameters are computed using SSDQM for different sampling
point numbers, and compared to that obtained from 2D higher order theories [5] as well as exact 3D elasticity
solutions by expanding all variables into trigonometric series [3]. The results are listed in Table 1 in
conjunction with the relative percentage error e% ¼ ðō� ō0Þ=ō0 � 100% against the exact results ō0. It is
satisfactory to notice that, regardless of layers arrangement, frequency parameters converge rapidly to the 3D
exact results as N increases. Results following M2D are obtained based on the generalized mixed-based plate
theory [5] and the followed number indicates the terms associated with higher-order displacement and shear
stresses involved in the theory. The current results when N ¼ 7 achieve similar accuracy to that of M2D-11 for
the fundamental frequencies. When N ¼ 9, the present results deviated form 3D exact solutions with extremely
small relative errors having an order of only 10�4. Table 2 exhibits that the present method converges rapidly
and is highly accurate for predicting fundamental frequency parameters of strongly thick laminates with
h/l ¼ 0.3 and 0.4.

To further validate convergence properties of SSDQM, frequency parameters ō of CC plates are computed.
Table 3 lists fundamental frequencies of CC plates having the same aspect ratio and layers arrangement as that
in Table 1, while Table 4 presents the first six frequency parameters of a thick CC plate (h/l ¼ 0.25) with
Table 1

Fundamental frequency parameters ō of SS plates composed of different layer numbers with lamina scheme of 451/�451/yusing different

sampling points N (h/l ¼ 0.1)

N [451/�451] e% [451/�451/451] e% [(451/�451)2] e%

5 0.0645598 �1.64 0.0898695 �1.37 0.0870414 �1.46

6 0.0651963 �0.67 0.0908178 �0.33 0.0880077 �0.36

7 0.0656576 0.04 0.0911396 0.03 0.0883568 0.03

8 0.0656408 0.01 0.0911178 0.005 0.0883337 0.005

9 0.0656339 0.0004 0.0911134 �0.0003 0.0883292 �0.0003

Exact [3] 0.0656341 — 0.0911137 — 0.0883295 —

M2D-11 [5] 0.0656171 �0.03 0.0910756 �0.04 0.0883003 �0.03

N [(451/�451)2]/451 e% [(451/�451)6] e% [(451/�451)6]/451 e%

5 0.0927712 �1.42 0.0939545 �1.46 0.0945072 �1.46

6 0.0938043 �0.32 0.0950290 �0.34 0.0955869 �0.33

7 0.0941368 0.03 0.0953784 0.03 0.0959344 0.03

8 0.0941125 0.004 0.0953528 0.004 0.0959087 0.004

9 0.0941083 �0.0003 0.0953484 �0.0003 0.0959044 �0.0003

Exact [3] 0.0941086 — 0.0953487 — 0.0959047 —

M2D-11 [5] 0.0940783 �0.03 0.0953201 �0.03 0.0958829 �0.02
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Table 2

Fundamental frequency parameters ō of strongly thick SS plates composed of different layer numbers with lamina scheme of 451/�451/

yusing different sampling points N

[451/�451] [451/�451/451] [451/�451]2 [451/�451]2/451 [451/�451]6 [451/�451]20/451

h/l ¼ 0.3

6 0.461664 0.488649 0.498429 0.512590 0.535290 0.541466

7 0.462278 0.489207 0.498940 0.513058 0.535691 0.541861

8 0.462173 0.489136 0.498871 0.512994 0.535623 0.541792

9 0.462165 0.489129 0.498865 0.512988 0.535619 0.541787

Exact [3] 0.462166 0.489130 0.498865 0.512989 0.535619 0.541788

h/l ¼ 0.4

6 0.713670 0.720231 0.728322 0.741146 0.772058 0.781670

7 0.714257 0.720840 0.728906 0.741694 0.772505 0.782100

8 0.714123 0.720744 0.728822 0.741621 0.772435 0.782029

9 0.714116 0.720737 0.728815 0.741614 0.772430 0.782024

Exact [3] 0.714117 0.720738 0.728816 0.741615 0.772431 0.782025

Table 3

Fundamental frequency parameters ō of CC plates composed of different layer numbers with lamina scheme of 451/�451/yusing

different sampling points N (h/l ¼ 0.1)

N [451/�451] e% [451/�451/451] e% [(451/�451)2] e%

5 0.13281 1.22 0.14926 �0.32 0.15167 0.13

6 0.13230 0.83 0.14935 �0.26 0.15108 �0.26

7 0.13128 0.05 0.14975 0.01 0.15145 �0.01

8 0.13122 0.01 0.14973 �0.01 0.15144 �0.02

9 0.13121 — 0.14974 — 0.15147 —

N [(451/�451)2]/451 e% [(451/�451)6] e% [(451/�451)6]/451 e%

5 0.15719 0.16 0.16306 0.55 0.16350 0.54

6 0.15656 �0.24 0.16217 0.00 0.16263 0.01

7 0.15694 0.00 0.16235 0.11 0.16281 0.12

8 0.15692 �0.01 0.16224 0.04 0.16271 0.06

9 0.15694 — 0.16217 — 0.16262 —

Table 4

First six frequency parameters ō of a CC thick plate with lamina scheme of 01/451/01/451 using different sampling points N (h/l ¼ 0.25)

N Mode

1 2 3 4 5 6

5 0.61005 1.45887 1.69545 — — —

6 0.61265 1.21816 1.68354 — — —

7 0.61279 1.23480 1.68468 1.87384 — —

8 0.61277 1.23358 1.68429 1.93185 2.52044 —

9 0.61270 1.23367 1.68433 1.91960 2.57509 2.66468

10 0.61269 1.23350 1.68432 1.92079 2.87911 2.62189

11 0.61267 1.23351 1.68432 1.92019 2.87871 2.62779

12 0.61267 1.23348 1.68432 1.92022 2.87875 2.62573

13 0.61267 1.23348 1.68432 1.92020 2.87873 2.62589

Note: ‘—’ denotes result not obtainable.

C.F. Lü et al. / Journal of Sound and Vibration 304 (2007) 987–995992
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lamina scheme of 01/451/01/451. In these two tables, all results for frequency parameters are given in five digits.
Relative deviation of the results from that obtained using N ¼ 9 are also tabulated in Table 3. Comparisons
show that at least three digits remain the same for the results of N ¼ 7 and 9 with a maximal relative deviation
of 0.12%. When N ¼ 8, this value is only 0.06%, with indication that it is adequate to set results of N ¼ 9 as
the comparison standard. Table 4 delivers that SSDQM is also highly efficient for determining higher-order
frequency parameters of thick laminates. When N ¼ 12 and 13, at least five digits remain the same for the first
five frequencies, while for the sixth frequency, four digits are the same. It should be pointed out that the third
frequency corresponds not to the three-half-wave mode but to the second order of the one-half-wave mode.
From physical sense, a given N is adequate for predicting the frequencies of small number of half waves, but it
is not necessarily the case for large number of half waves. This is obviously illustrated in Table 4.

Table 5 gives the first six frequency parameters for CC laminates with different aspect ratios. The lamina
schemes are of 501/301/501/301 (Scheme A) and 501/�301/501/�301 (Scheme B), and sampling point number is
taken as N ¼ 13. Numerical results indicate that, for the same aspect ratio and layer number, lamina scheme
poses a significant effect on vibration behavior of the plates. For plate of h/l ¼ 0.1, the first two frequencies
for Scheme A are larger than that for Scheme B. This situation is converse for the next four frequencies. But
for thick plates of h/l ¼ 0.25 and 0.4, only the fundamental frequency for Scheme A is larger than that for
Scheme B.

Finally, effects of ply angle on vibration behavior of angle-ply laminates are investigated. Figs. 2 and 3
depicted the variation of first three frequency parameters ō of SS and CC plates (s ¼ 0.1), respectively.
Figs. 2(a) and 3(a) are for antisymmetric lamina scheme of y/�y, while Figs. 2(b) and 3(b) for symmetric
Table 5

First six frequency parameters ō of CC plates of different aspect ratios with lamina schemes of [501/301]2: Scheme A; and [501/�301]2:

Scheme B (N ¼ 13)

Mode h/l ¼ 0.1 h/l ¼ 0.25 h/l ¼ 0.4

Scheme A Scheme B Scheme A Scheme B Scheme A Scheme B

1 0.1792 0.1654 0.5780 0.5406 0.9842 0.9394

2 0.3840 0.3556 1.0918 1.1041 1.7169 1.8896

3 0.4521 0.5787 1.1758 1.7345 1.9596 2.9283

4 0.6235 0.8143 1.8089 2.2607 2.6341 3.1491

5 0.8741 0.9901 2.1222 2.3882 3.0038 3.4995

6 0.8901 1.0591 2.2763 2.8447 3.2588 3.9926
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Fig. 2. Variation of first three frequency parameters ō of SS plate versus the ply angle y for antisymmetric (y/�y) and symmetric (y/�y/y)
lamina schemes (h/l ¼ 0.1, N ¼ 9).
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scheme of y/�y/y. It is observed from the figures that the fundamental frequency parameter ō decreases
monotonically as the ply angle increases from 01 to 901, ō for the second vibration mode increases first and
then decreases, and for the third vibration mode, ō decreases first, next increases and then decreases again.
Frequency parameters decrease very slowly as y increases in the vicinity of 901 for all modes in consideration
except for the third vibration mode of CC plate. It is seen from Fig. 3 that ō for the third mode experiences a
sharp jump-down when y goes through 851. Investigation of mode shapes indicates that there is mode shape
switching in the second mode for each case at the kink points of about y ¼ 9.51 for SS plates and y ¼ 121 for
CC plates. Similarly, there are two kink points in the third mode of SS plates, indicating that the mode shape
switches twice as y increases from 01 to 901. In fact, the critical point of jump-down on the ō� y curves for the
third mode of CC plate is also a kink point where mode shape switching occurs. Based on the above analysis,
special concerns are suggested to be drawn about the possible mode shape switching due to fiber orientations
when designing anisotropic composite laminates.
4. Conclusions

Free vibration of anisotropic angle-ply laminates in cylindrical bending is studied via the newly developed
state-space-based differential quadrature method (SSDQM). The analysis is directly based on the basic
equations of 3D elasticity, which discards the displacement and stress approximations along plate thickness
direction, making the current method suitable for laminates with arbitrary thickness. Meanwhile, the present
problem is approximately solved along the in-plane direction using the differential quadrature technique. The
present method is not limited to angle-ply laminates, but it can be applicable to problems of laminates with
arbitrary anisotropy, for which the state space formulation has been established by Tarn [18].

The application of differential quadrature removes the difficulties encountered by the conventional state
space approach, which is confined to simply supported edges. Although only the laminates with clamped edges
are considered, the present method can also deal with free edges in a similar way to the authors’ previous work
for laminated cantilever beams [11,12]. Semi-analytical results for fully clamped laminates, especially for
strongly thick plates, are presented and expected to serve as benchmarks for future numerical analyses.
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Appendix A

c1 ¼ Q11 �Q2
13=Q33; c3 ¼ Q12 �Q13Q23=Q33; c4 ¼ �Q13=Q33; c5 ¼ �Q23=Q33,

c6 ¼ Q66 �Q2
36=Q33; c7 ¼ Q44=d; c8 ¼ �Q45=d; c9 ¼ Q55=d; c10 ¼ 1=Q33,

b1 ¼ Q16 �Q13Q36=Q33; b2 ¼ Q26 �Q23Q36=Q33; b3 ¼ �Q36=Q33,

where d ¼ Q44Q55 �Q2
45, and Qij are determined by the stiffness constants and fiber orientation y as

referenced in Ref. [19].
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